

Nairobi Safi: A Mobile Crowdsourcing GIS for Reporting Emergent Illegal Waste Disposal Sites

A system design and implementation case study

Author: Joseph Thuha Maina

Originally developed as an undergraduate project (revised and republished)

Abstract

Illegal dumping remains a persistent environmental and public health challenge in many rapidly urbanizing cities, particularly in developing countries where reporting and enforcement mechanisms are weak or fragmented. In Nairobi, the emergence of informal dumpsites near residential and commercial areas often goes unreported, allowing waste accumulation to grow unchecked and negatively impact quality of life.

This project presents **Nairobi Safi**, a mobile-based crowdsourcing Geographic Information System (GIS) designed to enable citizens to report emergent illegal waste disposal sites with minimal technical knowledge. The system integrates an Android mobile application for spatial data collection, a cloud-hosted spatial database, a web-based visualization platform, and a publicly accessible REST API that exposes the collected data in GeoJSON format. Together, these components form an end-to-end pipeline that supports data capture, storage, visualization, and integration with traditional GIS software.

The solution leverages the widespread availability of smartphones and embedded sensors such as GPS and cameras to facilitate accurate, location-aware reporting directly from the field. Field testing with real user submissions demonstrated that citizen-generated spatial data can be collected efficiently, visualized effectively, and reused across multiple platforms at low cost. The project highlights both the potential and limitations of volunteered geographic information (VGI) for urban environmental monitoring and provides a practical reference architecture for similar civic technology and smart city initiatives.

Table of Contents

Abstract	1
Introduction	4
Problem Context.....	5
Related Work and Background	6
Spatial Crowdsourcing and Volunteered Geographic Information.....	6
Data Quality Considerations in Crowdsourced GIS	6
Policy Context and Waste Management in Kenya	7
System Design and Architecture	8
Design Objectives	8
High-Level Architecture Overview.....	8
Mobile Client Design	9
Data Storage and Data Model.....	10
Web Application and Visualization Layer	10
REST API and Interoperability	10
Implementation.....	11
Mobile Application Implementation	11
Location Handling and Accuracy Considerations	14
Database Implementation and Data Model	14
Web Application Implementation.....	15
REST API Implementation	16
Integration with GIS Software	16
Results & Demonstration.....	17
Data Collection and Reporting Outcomes	17
Mobile Application Visualization.....	17
Web-Based Visualization and Analysis.....	17
Routing and Operational Use.....	18
API Access and GIS Integration.....	20
Summary of System Performance	21
Limitations	22
Location Accuracy and Device Variability	22
Data Quality and User Bias.....	22
Absence of Enforcement and Institutional Integration.....	22

Incentivization Constraints	22
Technology Stack and Temporal Context	23
Conclusion & Future Work	24
Conclusion	24
Future Work	24
References.....	26

Introduction

Illegal waste dumping is a significant contributor to environmental degradation, public health risks, and reduced quality of life in urban areas. In many cities, particularly within developing economies, illegal dumpsites often emerge in informal settlements, road reserves, and unused land parcels where monitoring and enforcement are limited. Once established, these sites tend to expand rapidly due to continued dumping, delayed response, or complete absence of reporting mechanisms.

In Nairobi, the identification and reporting of illegal dumpsites is largely informal and inconsistent. Reports are typically made through phone calls or local administrative channels, if they are made at all. As a result, many dumpsites remain undocumented, making it difficult for authorities, waste management agencies, and researchers to assess the scale of the problem or prioritize clean-up efforts. The absence of a spatially explicit, publicly accessible reporting system further limits data-driven decision-making in waste management.

At the same time, mobile technology has become deeply embedded in daily life. Smartphones equipped with GPS, cameras, and internet connectivity provide an opportunity to involve the public directly in spatial data collection. This approach, commonly referred to as crowdsourcing or Volunteered Geographic Information (VGI), has been successfully applied in domains such as mapping, transportation, and disaster response. When designed carefully, such systems can generate large volumes of geographically referenced data at a fraction of the cost of traditional field surveys.

This project explores the application of mobile-based spatial crowdsourcing to the problem of illegal waste dumping. The objective is to design and implement a GIS platform that allows members of the public to report dumpsites as they are encountered, while simultaneously enabling authorities, researchers, and developers to access and analyse the collected data. By combining a mobile client, cloud-based storage, a web visualization interface, and an open REST API, the system aims to bridge the gap between citizen reporting and actionable spatial information.

The remainder of this document presents the design, implementation, and evaluation of the Nairobi Safi system, highlighting key engineering decisions, system capabilities, observed results, and opportunities for future improvement.

Problem Context

Illegal waste dumping persists as a systemic urban challenge largely due to weaknesses in reporting, monitoring, and response mechanisms. While waste generation is continuous, especially in densely populated urban areas, the identification of emergent dumpsites often depends on informal observations rather than structured data collection. This disconnect allows small, temporary dumping locations to grow into persistent environmental hazards before any intervention occurs.

In Nairobi, waste management efforts are constrained by limited spatial visibility of illegal dumping activities. Although regulations and policies governing waste management exist, there is no centralized, spatially explicit system that allows members of the public to report illegal dumpsites in a standardized and reusable manner. Reporting is typically ad hoc—through phone calls, word of mouth, or local administrative offices—and rarely results in consistent documentation. Consequently, many dumpsites remain unrecorded, making it difficult for waste management agencies to prioritize interventions or evaluate long-term trends.

Traditional approaches to identifying illegal dumpsites rely on manual surveys or periodic inspections conducted by authorities. These methods are resource-intensive, costly, and inherently limited in coverage. Given the scale and dynamic nature of urban waste dumping, especially in informal settlements and peri-urban areas, such approaches fail to provide timely or comprehensive data. The absence of up-to-date spatial information further hinders planning, resource allocation, and accountability.

At the same time, residents who are directly affected by illegal dumpsites are often the first to observe their emergence. However, without accessible reporting tools, this local knowledge remains disconnected from formal waste management workflows. This represents a missed opportunity: citizens already possess the contextual awareness needed to identify dumping activity but lack the means to translate these observations into actionable spatial data.

The core problem addressed in this project is therefore not the absence of waste management policies, but the lack of a practical, scalable mechanism to capture, store, and disseminate location-specific information on illegal dumping. A system that enables real-time, location-aware reporting—while remaining accessible to non-technical users—has the potential to close this gap. By transforming citizen observations into structured geospatial data, such a system can support more responsive waste management, data-driven decision-making, and broader civic engagement in urban environmental monitoring.

Related Work and Background

Spatial Crowdsourcing and Volunteered Geographic Information

Spatial crowdsourcing, often referred to as Volunteered Geographic Information (VGI), involves the collection of geospatial data by members of the public rather than by designated authorities or professionals. Advances in mobile technology—particularly the widespread availability of smartphones equipped with GPS, cameras, and internet connectivity—have significantly lowered the barrier to entry for spatial data collection. As a result, VGI has become an established data source in domains such as mapping, disaster response, transportation, and environmental monitoring.

One of the most prominent examples of VGI is OpenStreetMap (OSM), which has demonstrated that large-scale, user-generated spatial datasets can achieve high levels of coverage and practical accuracy when supported by appropriate tooling and community engagement. Similar approaches have been applied in emergency management, urban infrastructure mapping, and public service reporting, highlighting the potential of citizen-driven data collection to complement authoritative datasets.

However, the use of VGI introduces well-documented challenges, particularly around data quality, consistency, and bias. Contributors vary widely in technical expertise, motivation, and interpretation of observed phenomena. As a result, VGI systems must be designed with mechanisms that reduce error at the point of data capture, rather than relying solely on post-collection validation.

Data Quality Considerations in Crowdsourced GIS

Data quality remains one of the primary concerns limiting the adoption of crowdsourced geospatial systems in formal decision-making contexts. Location accuracy, attribute completeness, and temporal relevance are critical factors, especially when spatial data is intended to inform operational activities such as waste collection or environmental intervention.

Previous studies propose several approaches to mitigating VGI quality issues, including comparison with authoritative datasets, contributor weighting, rule-based validation, and machine learning-assisted anomaly detection. While these techniques can be effective, they often require significant computational resources or access to reference datasets that may not be readily available.

In the context of illegal waste dumping, the most critical quality dimension is **location accuracy**. A mislocated dumpsite report can render the data operationally useless, regardless of the accuracy of other attributes. This project therefore prioritizes reducing user-induced

location errors by automating geolocation through device GPS rather than relying on manual coordinate entry. Attribute design is similarly simplified to favour estimation and categorical inputs over precise measurements that would be unrealistic for non-technical users to provide.

Policy Context and Waste Management in Kenya

Kenya's waste management framework is guided by national policies and regulations, including the National Solid Waste Management Strategy (NSWMS), which emphasizes environmental protection, public health, and sustainable waste handling practices. While the policy framework outlines roles and responsibilities for waste management, its implementation is constrained by limited access to timely, spatially explicit data on illegal dumping activities.

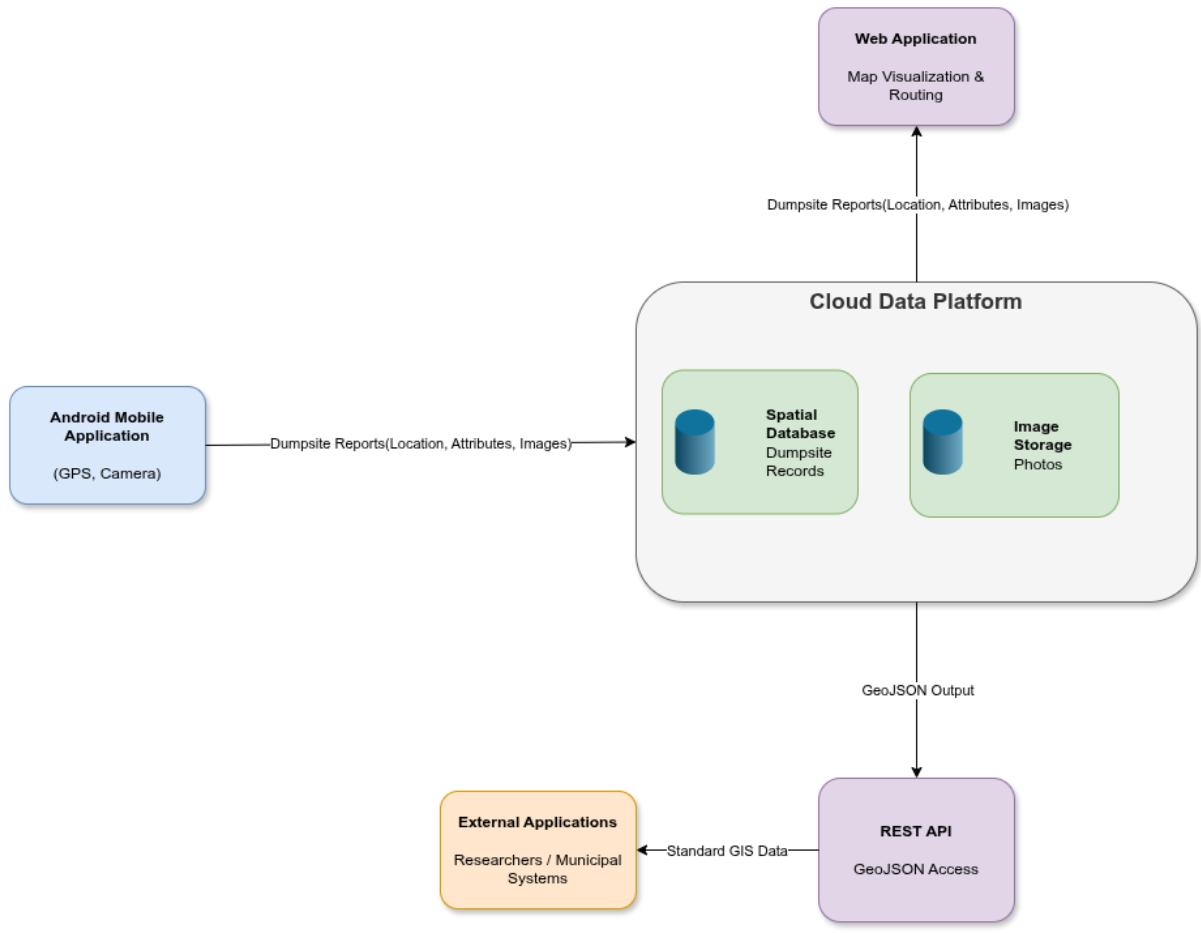
Waste disposal locations are rarely treated as formal land-use elements in urban planning, particularly when dumping occurs informally or illegally. As a result, planning and enforcement efforts often operate reactively rather than proactively. A system that enables continuous, location-aware reporting of illegal dumpsites aligns with the objectives of the NSWMS by supporting evidence-based decision-making and increasing public participation in environmental stewardship.

This project positions crowdsourced GIS not as a replacement for formal waste management systems, but as a complementary data collection layer that can improve visibility, responsiveness, and accountability.

System Design and Architecture

Design Objectives

The primary objective of the system design was to create an end-to-end spatial reporting platform that is accessible to non-technical users while remaining interoperable with professional GIS tools. The system was designed to satisfy the following criteria:


- Enable simple, location-aware reporting of illegal dumpsites by the general public
- Minimize user-induced errors during data capture
- Support centralized storage of spatial and non-spatial attributes
- Allow data visualization across mobile and web environments
- Provide open access to non-sensitive spatial data through standard formats

These objectives informed both the architectural layout and technology choices.

High-Level Architecture Overview

The system follows a **client–cloud–consumer** architecture composed of four primary components:

1. **Mobile Client Application (Android)**
2. **Cloud-Based Spatial Database**
3. **Web-Based Visualization Application**
4. **Public REST API**

Figure 1: High-level system architecture of the Nairobi Safi platform, illustrating data flow from mobile-based reporting to centralized storage, web-based visualization, and GIS integration through an open REST API.

Together, these components form a pipeline that supports data capture, storage, retrieval, visualization, and reuse.

At a high level, the mobile client is responsible for data acquisition, including image capture, geolocation, and attribute input. Once submitted, reports are stored in a cloud-hosted database. The same data is then accessed by both the web application and the REST API, enabling visualization and integration with external GIS software.

Mobile Client Design

The Android application serves as the primary data collection interface. Native Android development was selected to ensure direct access to device sensors such as GPS and the camera, which are essential for accurate spatial reporting. The application workflow is intentionally linear and minimal, guiding users through image capture, attribute selection, and submission with minimal cognitive load.

Geolocation is handled automatically using the device's GPS, eliminating the need for users to manually specify coordinates. This design choice reduces location errors and ensures that

each report is spatially explicit. Attribute inputs are constrained to predefined categories where possible, balancing usability with data consistency.

Data Storage and Data Model

A cloud-hosted, document-based NoSQL database is used to store dumpsite reports. Each report is represented as a single document containing both spatial and non-spatial attributes, including:

- Geographic location (latitude and longitude)
- Image reference
- Estimated size of the dumpsite
- Waste material categories
- Accessibility information
- Optional reporter metadata

The schema-less nature of the database allows flexibility in data evolution while supporting rapid development and scalability. Unique identifiers are automatically generated for each entry, enabling consistent referencing across the system.

Web Application and Visualization Layer

The web application provides a browser-based interface for visualizing reported dumpsites on an interactive map. This component is designed primarily for stakeholders such as waste management personnel, researchers, and the general public who require an overview of spatial patterns rather than data entry capabilities.

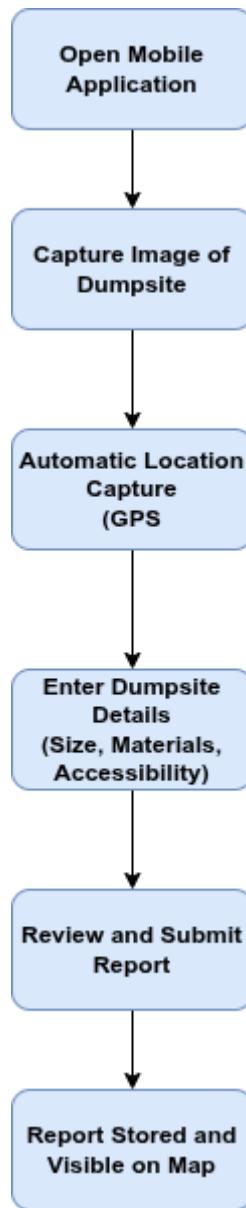
Key features include marker visualization, attribute inspection, clustering at lower zoom levels, and routing functionality to assist waste collection planning. The web interface demonstrates how crowdsourced spatial data can be transformed into actionable visual insights.

REST API and Interoperability

To ensure that the collected data can be reused beyond the confines of the system's native applications, a RESTful API is provided. The API exposes non-sensitive dumpsite data in GeoJSON format, a widely supported standard in GIS workflows.

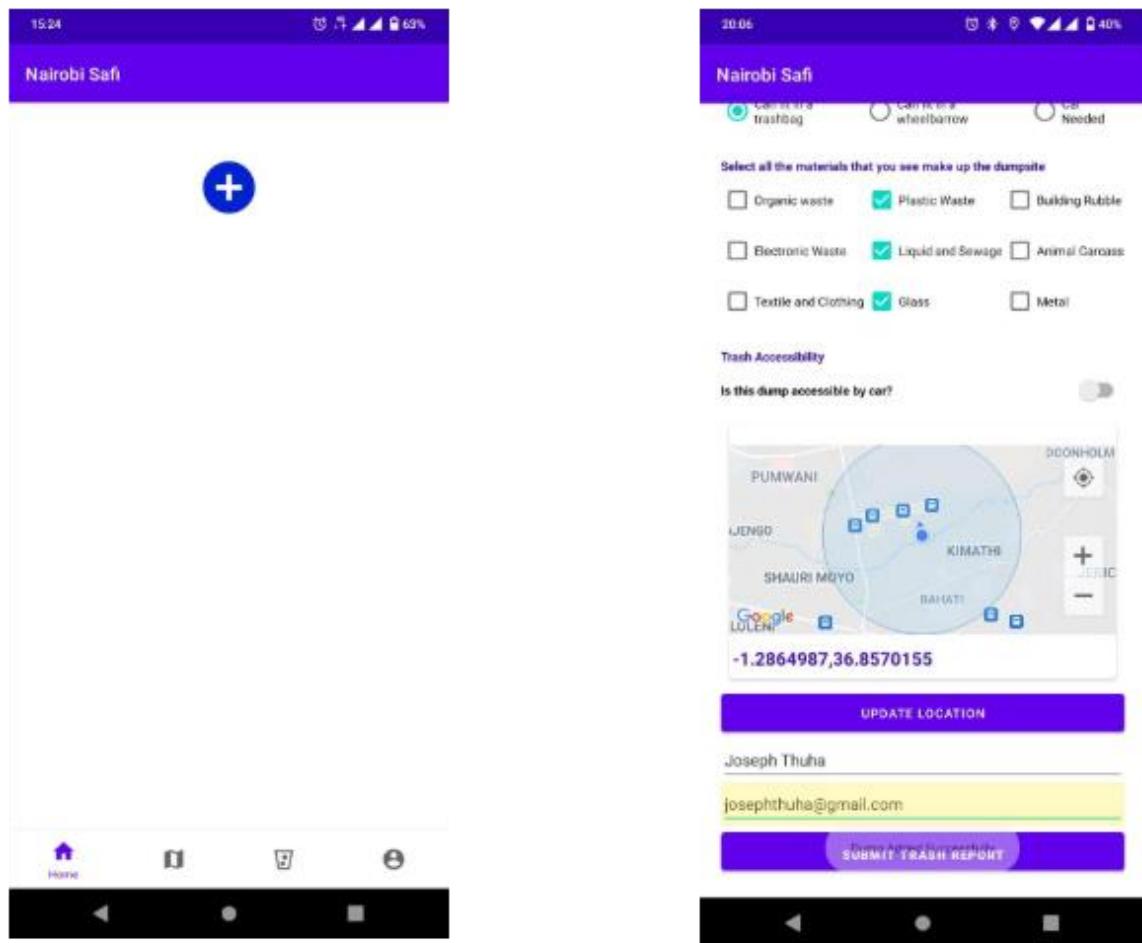
This design allows direct integration with desktop GIS software such as QGIS and ArcGIS, as well as with custom analytical pipelines and third-party applications. By prioritizing open formats and simple HTTP-based access, the system promotes transparency and extensibility.

Implementation


Mobile Application Implementation

The mobile application was implemented as a native Android application and serves as the primary interface for spatial data collection. Native development was selected to allow direct access to device sensors, particularly GPS and the camera, without abstraction layers that could introduce latency or reduce accuracy.

The application follows a task-focused user flow designed to minimize friction during data capture. Users initiate a new report by capturing an image of the dumpsite, after which they are prompted to provide a small set of structured attributes. Geolocation is handled automatically using the device's location services, ensuring that each report is spatially explicit without requiring manual coordinate entry.


To reduce user-induced errors, attribute inputs such as dumpsite size, accessibility, and waste material types are constrained to predefined options. This design choice balances usability with data consistency, allowing non-technical users to contribute meaningful information while maintaining a standardized dataset suitable for analysis.

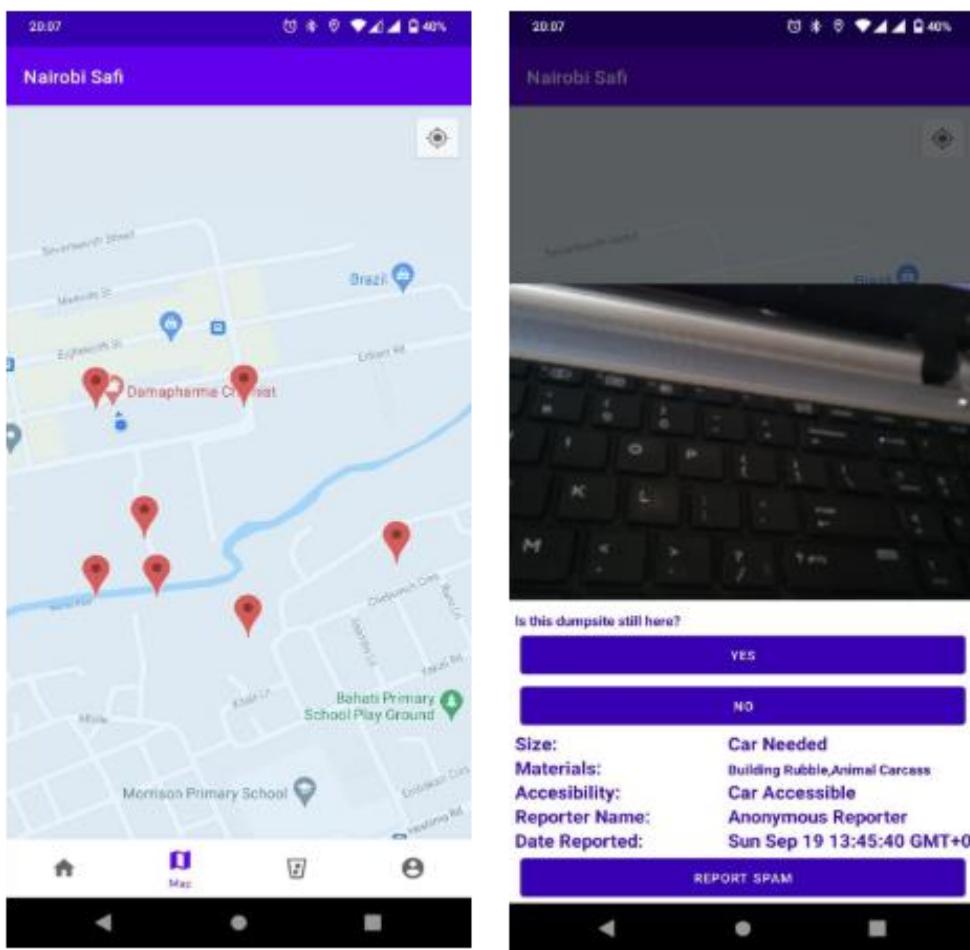

The application includes a map interface that displays previously reported dumpsites as interactive markers. Selecting a marker reveals the associated attributes, enabling users to view and verify existing reports. Basic moderation functionality is supported through user feedback mechanisms, such as flagging inaccurate or obsolete reports for review.

Figure 2: Mobile reporting workflow illustrating the steps followed by users to submit illegal dumpsite reports using the Android application.

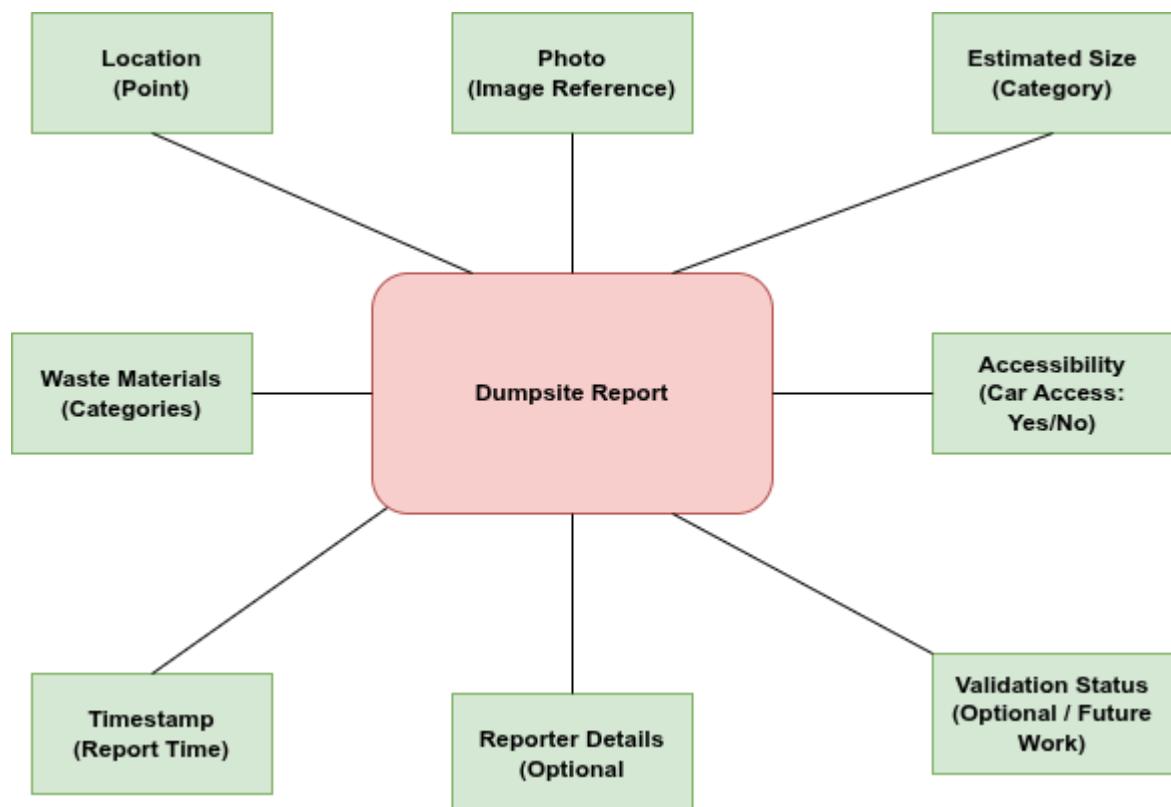
Figure 3(below): Reporting workflow screens (camera → form → success)

Figure 4: Map and details screens (marker view → details view)

Location Handling and Accuracy Considerations

Accurate geolocation is central to the usefulness of the collected data. The application relies on device GPS to determine the location of each report at the time of submission. Users are prompted to enable location services if they are disabled, and the application requests updated location fixes when necessary to avoid reliance on stale positional data.

By automating location capture, the system avoids common errors associated with manual location entry, such as incorrect coordinates or misplaced markers. While device-level GPS accuracy varies depending on hardware quality and environmental conditions, this approach provides a practical balance between accuracy and accessibility for crowdsourced reporting.


Database Implementation and Data Model

Reported dumpsites are stored in a cloud-hosted document-based NoSQL database. Each report is represented as a single document containing both spatial and non-spatial attributes.

This approach simplifies data ingestion from the mobile client and supports flexible schema evolution as system requirements change.

The core attributes stored for each report include geographic coordinates, image references, estimated size, waste material categories, accessibility information, and optional reporter metadata. Unique identifiers are automatically assigned by the database, enabling consistent referencing across the mobile application, web interface, and API.

Database access rules are designed to allow public read access to non-sensitive data while restricting write and delete operations to authenticated clients and administrative workflows. Deletion of reports is intentionally constrained to prevent accidental or malicious data loss, with incorrect or spam entries flagged for review rather than immediately removed.

Figure 5: Conceptual data model for a dumpsite report, illustrating the core attributes captured during mobile-based reporting and stored for visualization and analysis.

Web Application Implementation

The web application provides a browser-based interface for visualizing and interacting with the collected spatial data. It retrieves dumpsite records from the database through the backend services and renders them on an interactive map.

Key features implemented in the web application include marker visualization, attribute inspection, and clustering of nearby reports to reduce visual clutter at lower zoom levels. Clustering ensures that dense areas of reported dumpsites remain interpretable and scalable as the dataset grows.

Routing functionality is also implemented to support operational use cases such as waste collection planning. Users can select a dumpsite and generate a route from a chosen origin point, allowing collection teams to assess accessibility and plan efficient response paths. This functionality is intentionally implemented on the web platform rather than the mobile client to avoid dependency constraints and usage costs associated with certain third-party routing services.

REST API Implementation

To enable interoperability with external systems and professional GIS tools, a RESTful API was developed to expose the collected data. The API supports read-only access to non-sensitive dumpsite records and returns responses in GeoJSON format, a widely supported standard in geospatial workflows.

The API accepts HTTP GET requests and provides structured spatial features that can be consumed by desktop GIS software, web mapping libraries, or custom analytical pipelines. By decoupling data access from the native applications, the API allows the system's data to be reused for spatial analysis, visualization, and reporting without requiring direct database access.

This open-access approach promotes transparency and extensibility while maintaining control over write operations and sensitive information.

Integration with GIS Software

The GeoJSON output provided by the API enables direct integration with traditional GIS platforms such as QGIS and ArcGIS. Dumpsite data can be loaded dynamically as vector layers, allowing users to perform spatial analysis, generate maps, and combine the crowdsourced data with other spatial datasets.

This integration demonstrates the system's ability to bridge citizen-generated data and professional GIS workflows. By adhering to open standards, the system ensures that collected data remains usable beyond the lifecycle of the applications themselves.

Results & Demonstration

Data Collection and Reporting Outcomes

The system was tested using real-world dumpsite reports submitted through the mobile application. Users were able to successfully capture images, automatically record geographic locations, and submit structured attribute data for each reported dumpsite. Submissions were stored centrally and became immediately available for visualization and retrieval across all system components.

The reporting workflow proved intuitive for non-technical users, with minimal guidance required after initial installation. Automated geolocation eliminated the need for manual coordinate entry, reducing common sources of spatial error. Each successful submission resulted in a complete spatial record consisting of a point location, descriptive attributes, and an associated image reference.

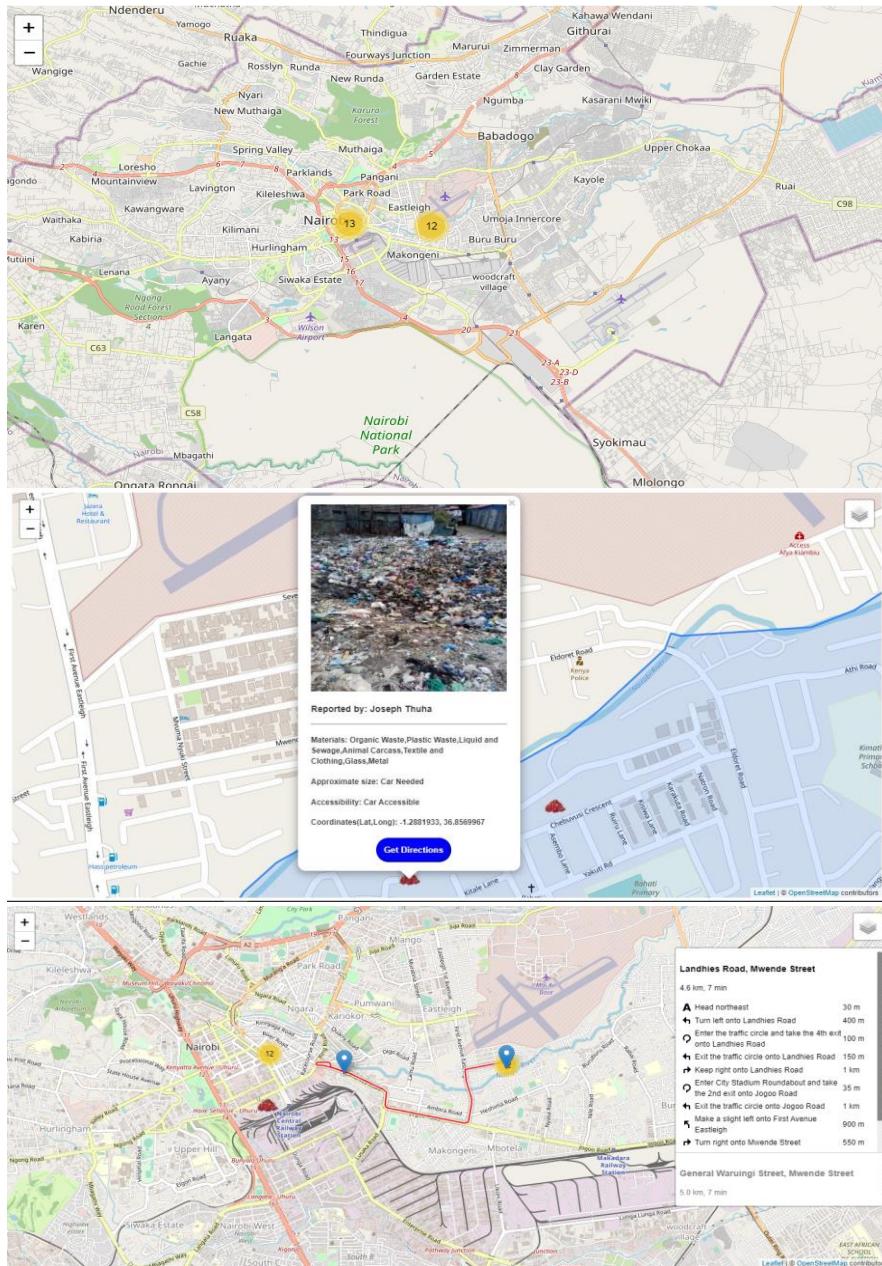
These results demonstrate that mobile-based spatial crowdsourcing can serve as an effective mechanism for collecting geographically explicit environmental data at low cost.

Mobile Application Visualization

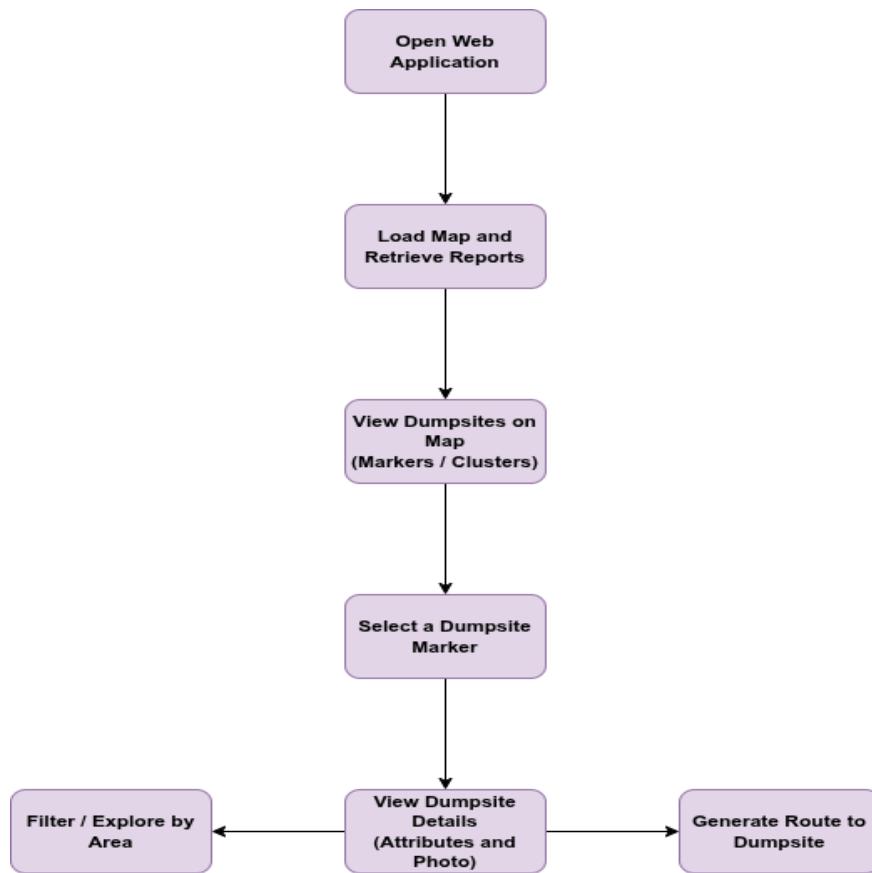
Within the mobile application, reported dumpsites are displayed as interactive map markers. Users can view both their own submissions and reports contributed by others, fostering transparency and situational awareness. Selecting a marker reveals the full set of attributes associated with the dumpsite, including estimated size, waste composition, accessibility, and imagery.

This immediate feedback loop allows contributors to verify submissions and observe the spatial distribution of reported dumpsites. The ability to view existing reports also helps reduce duplicate submissions and provides users with contextual awareness of dumping patterns in their surroundings.

Web-Based Visualization and Analysis


The web application provides an overview of reported dumpsites through an interactive map interface optimized for larger screens. Dumpsite locations are rendered as map markers, with clustering applied at lower zoom levels to maintain readability in areas with higher report density.

Users can inspect individual dumpsite attributes and visualize spatial patterns across neighbourhoods and administrative boundaries. The web interface demonstrates how crowdsourced spatial data can be transformed into actionable insights, supporting tasks such as prioritization of clean-up efforts and identification of dumping hotspots.


Routing and Operational Use

Routing functionality implemented in the web application enables users to generate directions from a chosen origin point to a selected dumpsite. This feature supports operational scenarios such as waste collection planning by illustrating accessible routes and estimated travel paths.

By integrating routing directly into the visualization layer, the system extends beyond passive mapping and supports decision-making workflows. This capability demonstrates how crowdsourced data can be operationalized rather than remaining purely descriptive.

Figure 6: Web map showing marker clusters dumpsite details and routing from the web map

Figure 7: Web visualization interaction flow showing how users retrieve, explore, and operationalize illegal dumpsite reports through map inspection, clustering, and routing.

API Access and GIS Integration

The REST API provides programmatic access to dumpsite data in GeoJSON format, enabling direct integration with external applications and GIS software. API responses can be consumed using standard HTTP requests and loaded dynamically into desktop GIS environments such as QGIS.

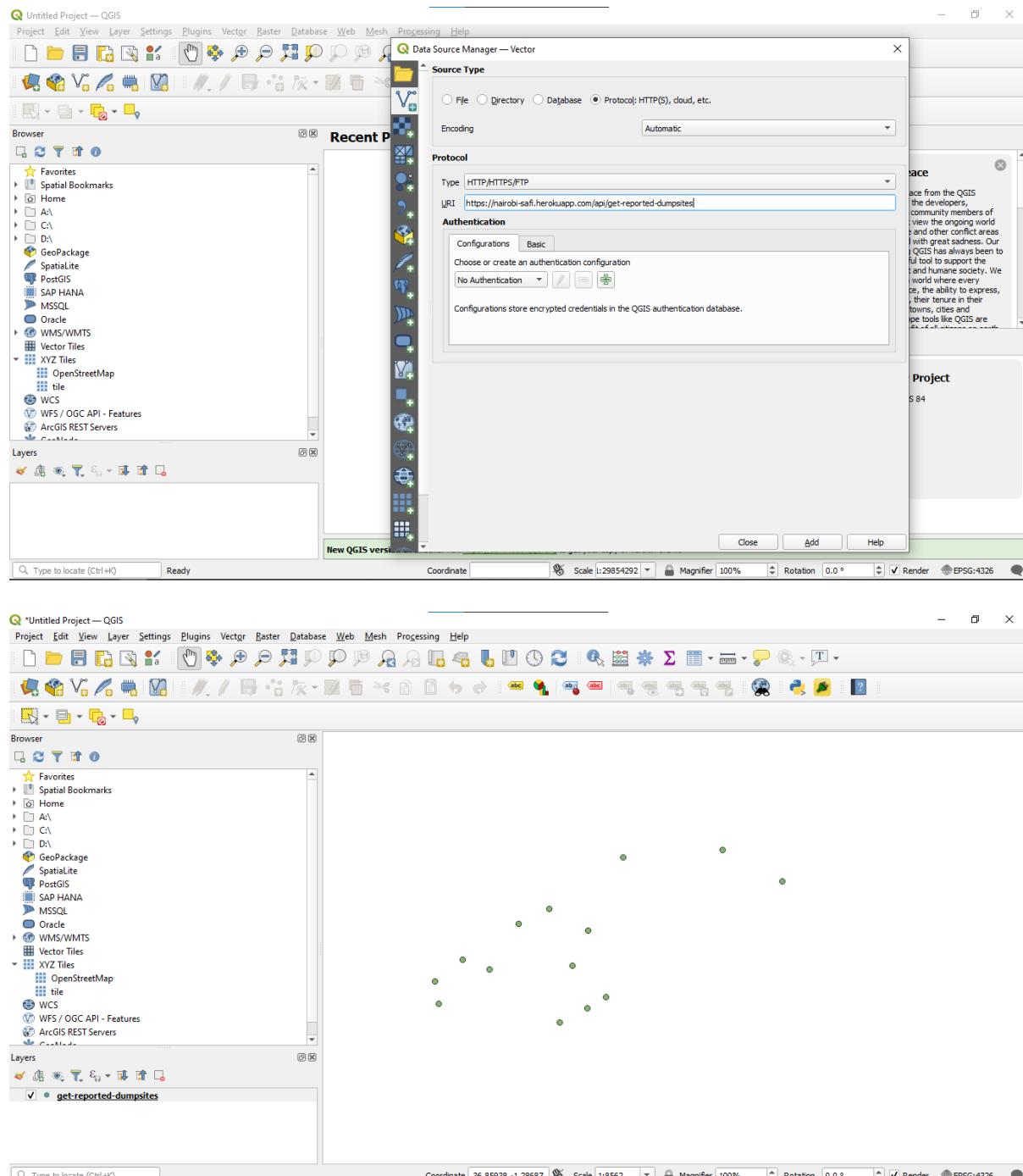
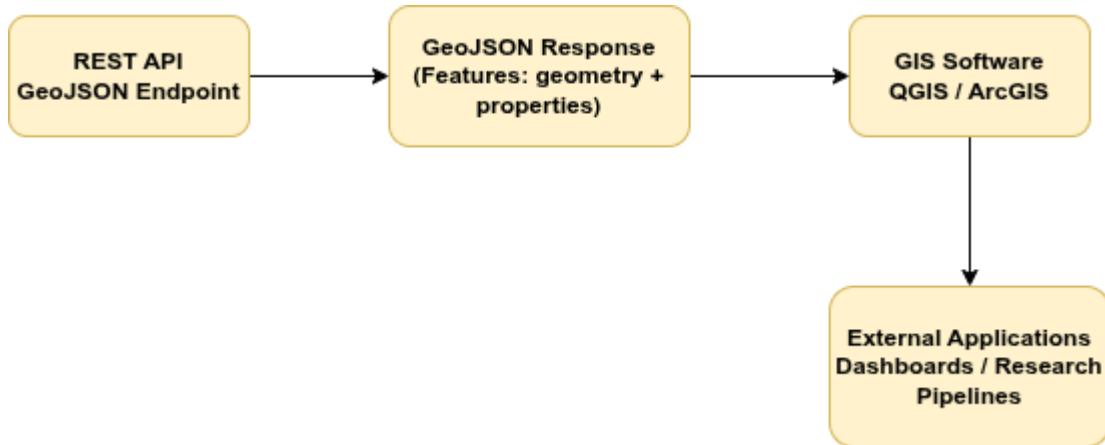



Figure 8: Implementation of dataset fetching in QGIS

This integration allows users to perform spatial analysis, generate thematic maps, and combine crowdsourced dumpsite data with other geospatial layers. The ability to access live data through an API underscores the system's interoperability and reinforces its suitability for research, planning, and reporting purposes.

Figure 9: API interaction diagram illustrating how external consumers access illegal dumpsite reports through a REST endpoint and consume the resulting GeoJSON in GIS software and third-party applications.

Summary of System Performance

Across all components, the system successfully demonstrated:

- Reliable mobile-based spatial data collection
- Centralized storage and retrieval of georeferenced reports
- Multi-platform visualization through mobile and web interfaces
- Interoperability with professional GIS tools via open standards

These results confirm the feasibility of using mobile-based spatial crowdsourcing as a complementary data collection approach for urban waste management and environmental monitoring.

Limitations

While the system demonstrates the feasibility and value of mobile-based spatial crowdsourcing for reporting illegal waste dumping, several limitations were identified during design and testing. These limitations reflect both technical constraints and broader systemic factors that influence the effectiveness of citizen-generated spatial data.

Location Accuracy and Device Variability

The accuracy of reported dumpsite locations depends on the quality of the reporting device and prevailing environmental conditions. GPS accuracy varies across smartphone models and can be degraded in areas with poor satellite visibility, dense buildings, or limited network connectivity. Although automated geolocation reduces user-induced errors, positional inaccuracies at the device level remain unavoidable in a crowdsourced system.

Data Quality and User Bias

Crowdsourced data is inherently subject to variability in user interpretation and motivation. Contributors differ in their ability to estimate attributes such as dumpsite size or waste composition, which can introduce inconsistency across reports. Additionally, reports are more likely to originate from areas where users are already engaged or directly affected, potentially leading to spatial bias and uneven coverage.

While basic moderation mechanisms are supported, comprehensive data validation strategies—such as contributor weighting, automated anomaly detection, or cross-referencing with authoritative datasets—were beyond the scope of this implementation.

Absence of Enforcement and Institutional Integration

The system focuses on data collection, visualization, and accessibility, but does not directly enforce waste management actions. Without formal integration into government or municipal workflows, the presence of accurate dumpsite data alone does not guarantee timely clean-up or remediation. The effectiveness of the system therefore depends on adoption by relevant authorities and alignment with operational processes.

Incentivization Constraints

The system does not implement monetary or structured non-monetary incentives for participation. As a result, sustained user engagement relies on voluntary contributions and civic motivation. While this approach reduces operational costs, it may limit long-term data collection volume and consistency compared to systems that incorporate formal incentive mechanisms.

Technology Stack and Temporal Context

The system was implemented using technologies and services that were appropriate at the time of development. While the architectural principles remain valid, alternative tools and platforms may offer improved scalability, cost efficiency, or flexibility if the system were to be reimplemented today. Future iterations could benefit from modern cloud-native services, open-source mapping stacks, and enhanced data processing pipelines.

Conclusion & Future Work

Conclusion

This project demonstrated the feasibility of using mobile-based spatial crowdsourcing to support the identification and reporting of illegal waste disposal sites in urban environments. By integrating a native mobile application, cloud-hosted spatial storage, a web-based visualization platform, and an open REST API, the system provides an end-to-end pipeline for collecting, managing, and disseminating georeferenced environmental data.

The results show that non-technical users can successfully contribute spatially explicit information using widely available mobile devices, and that such data can be reused across multiple platforms and professional GIS workflows. The system effectively bridges citizen observations and actionable spatial information, offering a practical complement to traditional waste management and monitoring approaches.

Beyond its immediate application to waste reporting, the architecture and design principles demonstrated in this project are applicable to a wide range of civic and environmental monitoring use cases. By prioritizing usability, open standards, and interoperability, the system illustrates how citizen-generated data can be transformed into a reusable spatial resource rather than remaining isolated within a single application.

Future Work

Several opportunities exist to extend and enhance the system in future iterations.

One area for improvement is **real-time data synchronization and visualization**. Implementing event-driven data updates using technologies such as WebSockets or server-sent events would improve responsiveness and user experience across both mobile and web platforms.

Advanced data validation mechanisms could be introduced to address crowdsourcing quality concerns. These may include contributor trust scoring, temporal consistency checks, or the integration of machine learning techniques to identify anomalous reports. The use of high-resolution satellite imagery in conjunction with reported locations presents an additional opportunity for semi-automated validation of dumpsite presence and extent.

Incentivization strategies represent another potential enhancement. Structured non-monetary incentives or partnerships with municipal authorities could encourage sustained participation while maintaining low operational costs.

Finally, **institutional integration** remains a critical pathway for impact. Formal adoption by local authorities or waste management agencies would allow the system to transition from a reporting and visualization tool into an operational component of urban waste management

workflows. Such integration would enable more timely response, accountability, and long-term environmental benefits.

References

1. Howe, & Jeff, (2006). The Rise of Crowdsourcing. *Wired*. 14.
2. Fast V, Rinner C. A Systems perspective on Volunteered Geographic Information *ISPRS International Journal of Geo-Information*. 2014; 3(4):1278-1292.
<https://doi.org/10.3390/ijgi3041278>
3. Hardy D, Frew J, Goodchild. Volunteered Geographic Information Production as a Spatial Process
4. Anahid Basiri, Muki Haklay, Giles Foody & Peter Mooney (2019) Crowdsourced geospatial data quality: challenges and future directions, *International Journal of Geographical Information Science*, 33.8, 1588-1593, DOI: 10.1080/13658816.2019.1593422
5. National Environment Management Authority (NEMA). The National Solid Waste Management Strategy
6. Ali Mansourian, Mahdi Farnaghi and Mohammad Taleai, 2008. Development of New Generations of Mobile GIS Systems Using Web Services Technologies: A Case Study for Emergency Management. *Journal of Applied Sciences*, 8: 2669-2677.